秃鹫小说

秃鹫小说>走进不科学讲的什么 > 第24章 这个时空唯一的名字(第1页)

第24章 这个时空唯一的名字(第1页)

屋子外。看着急匆匆跑回屋内的小牛,徐云隐约意识到了什么,也快步跟了上去。“嘭——”刚一进屋,徐云便听到了一道重物撞击的声音。他顺势看去,只见此时小牛正一脸懊恼的站在书桌边,左手握拳,指关节重重的压在桌上。很明显,刚才小牛对着这张书桌来了波蓄意轰拳。徐云见状走上前,问道:“牛顿先生,您这是”“你不懂。”小牛有些烦躁的挥了挥手,但没几秒便又想到了什么:“肥鱼,你——或者那位韩立爵士,对数学工具了解吗?”徐云再次装傻犯楞的看了他一眼,问道:“数学工具?您是说尺子?还是圆规?”听到这番话,小牛的心立时凉了一半,但话说了半截总不能就这样停住,便继续道:“不是现实的工具,而是一套能够计算变化率的理论。比如刚才的色散现象,那是一种瞬时的变化率,甚至还可能牵扯到某些肉眼无法见到的微粒。而要计算这种变化率,我们就需要用到另外一种可以连续累加的工具,去计算折射角的积。比如n个a+b相乘,就是从a+b中取一个字母a或b的积,例如(a+b)2=a2+2ab+b2算了,我估计你也听不懂。”徐云似笑非笑的看了他一眼,说道:“我听得懂啊,杨辉三角嘛。”“嗯,所以还是准备一下等下去威廉舅等等,你说什么?”小牛原本正顺着自己的念头在说话,听清徐云的话后顿时一愣,旋即猛然抬起头,死死地盯着他:“羊肥三搅?那是什么?”徐云想了想,朝小牛伸出手:“能把笔递给我吗,牛顿先生?”如果这是在一天前,也就是小牛刚见到徐云那会儿,徐云的这个请求百分百会被小牛拒绝。甚至有可能会被再送上一句‘你也配?’。但随着不久前色散现象的推导,此时的小牛对于徐云——或者说他身后的那位韩立爵士,已经隐约产生了一丝兴趣与认同。否则他刚刚也不会和徐云多解释那么一番话了。因此面对徐云的要求,小牛罕见的递出了笔。徐云接过笔,在纸上快速的写画了一个图:1111211331(请忽略省略号,不加的话会自动缩进,晕了)徐云一共画了八行,每行的最外头两个数字都是1,组成了一个等边三角形。熟悉这个图像的朋友应该知道,这便是赫赫有名的杨辉三角,也叫帕斯卡三角——在国际数学界,后者的接受度要更高一些。但实际上,杨辉发现这个三角形的年份要比帕斯卡早上四百多年:杨辉是南宋生人,他在1261年《详解九章算法》中,保存了一张宝贵图形——“开方作法本源”图,也是现存最古老的一张有迹可循的三角图。不过由于某些众所周知的原因,帕斯卡三角的传播度要广很多,一些人甚至根本不认杨辉三角的这个名字。因此纵有杨辉的原笔记录,这个数学三角形依旧被叫做了帕斯卡三角。但值得一提的是帕斯卡研究这幅三角图的时间是1654年,正式公布的时间是1665年11月下旬,离现在还有整整一个月!这也是徐云为什么会从色散现象入手的原因:色散现象是很典型的微分模型,甚至要比万有引力还经典,无论是偏折角度还是其本身的“七合一”表象,都直接的指向了微积分工具。17这个概念,更是直接与指数的分数表态挂上了钩。接触到色散现象的小牛要是不想到自己正一筹莫展的‘流数术’,那他真可以洗洗睡了。小牛见到色散现象——小牛产生好奇——小牛测算数据——小牛想到流数术——徐云引出杨辉三角。这是一个完美的逻辑递进的陷阱,一个从物理到数学的局。至于徐云画出这幅图的理由很简单:杨辉三角,是每个数学从业者心中拔不开的一根刺!杨辉三角本来就是咱们老祖宗先发明并且有确凿证据的数学工具,凭啥因为近代憋屈的原因被迫挂在别人的名下?原本的时空他管不着也没能力去管,但在这个时间点里,徐云不会让杨辉三角与帕斯卡共享其名!有牛老爷子做担保,杨辉三角就是杨辉三角。一个只属于华夏的名词!随后徐云心中呼出一口浊气,继续动笔在上面画了几条线:“牛顿先生,您看,这个三角的两条斜边都是由数字1组成的,而其余的数都等于它肩上的两个数相加。小主,这个章节后面还有哦,,后面更精彩!从图形上说明的任一数c(n,r),都等于它肩上的两数c(n-1,r-1)及c(n-1,r)之和。”说着徐云在纸上写下了一个公式:c(n,r)=c(n-1,r-1)+c(n-1,r)(n=1,2,3,···n)以及(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+6ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5在徐云写到三次方那栏时,小牛的表情逐渐开始变得严肃。而但徐云写到了六次方时,小牛已然坐立不住。干脆站起身,抢过徐云的笔,自己写了起来:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+a6!很明显。杨辉三角第n行的数字有n项,数字和为2的n-1次幂,(a+b)的n次方的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项!虽然这个展开式对于小牛来说毫无难度,甚至可以算是二项式展开的基础操作。但是,这还是头一次有人如此直观的将开方数用图形给表达出来!更关键的是,杨辉三角第n行的个数可表示为c(n-1,-1),即为从n-1个不同元素中取-1个元素的组合数。这对于小牛正在进行的二项式后续推导,无疑是个巨大的助力!但是小牛的眉头又逐渐皱了起来:杨辉三角的出现可以说给他打开了一个新思路,但对于他现在所卡顿的问题,也就是(p+pq)n的展开却并没有多大帮助。因为杨辉三角涉及到的是系数问题,而小牛头疼的却是指数问题。现在的小牛就像是一位骑行的老司机。拐过一个山道时忽然发现前方百米过后一马平川,景色壮美,但面前十多米处却有一个巨大的落石堆挡路。而就在小牛纠结之时,徐云又缓缓说了一句话:“对了,牛顿先生,韩立爵士对于杨辉三角也有所研究。后来他发现二项式的指数似乎并不一定需要是整数,分数甚至负数似乎也是可行的。”“负数的论证方法他没有说明,但却留下了分数的论证方法。”“他将其称为”“韩立展开!”:()走进不科学

热门小说推荐

最新标签